If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=3600
We move all terms to the left:
b^2-(3600)=0
a = 1; b = 0; c = -3600;
Δ = b2-4ac
Δ = 02-4·1·(-3600)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*1}=\frac{-120}{2} =-60 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*1}=\frac{120}{2} =60 $
| w/2=0. | | b^2=6400 | | 9-8y=8 | | .0568=(x-5.25)/x | | (3xG)+50=296 | | 3n=272 | | b^2=11 | | q=q^2-10q+50 | | 3/5x-4=11/3 | | 2(h+8)-h=3h-12 | | -21+6x=69 | | 47=-x-11+43 | | 9=w/5-13 | | 10x+6=2/1(4x−8) | | b^2=784 | | 143x=109 | | b^2=3969 | | b^2=1296 | | 4(y−8)= | | 4(y−8)= | | 5(3m+4)=3(4m+17) | | b^2=164 | | 7-d12=41 | | -2x+(-9x+45)1=-10 | | ⎼7n+5=⎼16 | | (45-9x)1/2=x-5 | | x+0.5=7/4 | | 7x+21=11x+55 | | 7x+3=11x-55 | | b^2=5,184 | | 3a-3=2(a+1)+8a+4 | | 5=-4x+1=x=1 |